
Base Acronis Cyber Platform API operations with bash.md 3/19/2020

1 / 29

Hands-on Lab: Base Acronis Cyber Platform API operations with bash
Hands-on Lab: Base Acronis Cyber Platform API operations with bash

Hands-on Lab Code Directory
The Acronis Cyber Platform API general workflow
Prerequisites and basis information
Exercise 1: Create an API Client to access the API

Implementation details
Step-by-step execution and checks

Exercise 2: Issue a token to access the API
Implementation details
Step-by-step execution and checks

Exercise 3: Create partner, customer and user tenants and set offering items
Implementation details
Step-by-step execution and checks

Exercise 4: Get a tenant usage
Implementation details
Step-by-step execution and checks

Exercise 5: Create and download simple report
Implementation details
Step-by-step execution and checks

Exercise 6: Add marks to your API calls for better support
Implementation details
Step-by-step execution and checks

Summary
Appendix: Basis functions used in code

Hands-on Lab Code Directory

File name File description

00.basis_functions.sh

Contains code basis functions to call the API:
_get_api_call_basic,_get_api_call_bearer,_get_api_call_bearer_with_response_code,
_post_api_call_basic, _post_api_call_bearer and _put_api_call_bearer as well as other
utility functions described at the end of the manual. It's included in each file except
01.basic_api_checks.sh.

01.basic_api_checks.sh
Base sanity checks need to be performed before the API calls. It's included in each file except
00.basis_functions.sh, 01.create-api-client.sh and 02.issue_token.sh.

01.create-api-client.sh

Creates an API Client (client_id, client_secret) to generate a JWT token and access the API.
The Basic Authentication is used. For Acronis Cyber Protect (Acronis Cyber Cloud 9.0) the
Management Console can be used to create an API Client. The result of the script is stored in clear
text api_client.json file. It's raw answer from the API call. For your solutions, please, implement
secured storage for client_id, client_secret as they are credentials to access the API. The
scrip asks for login and password to create an API Client.

02.issue_token.sh

Issue a JWT token to access the API. The token is expired in 2 hours. During the sanity checks in
01.basic_api_checks.sh an expiration time for the current token is checked and a token is
reissued if needed. The result of the script is stored in clear text api_token.json file. It's raw
answer from the API call. For your solutions, please, implement secured storage for a JWT token
info as they are credentials to access the API.

03.create-partner-tenant.sh
Creates a partner with name MyBashPartner and enables all available offering items dor them for
an edition, specified in json configuration files cyber.platform.cfg.json and
cyber.platform.cfg.defaults.json.

04.create-customer-tenant.sh
Creates a customer for MyBashPartner with name MyBashCustomer and enables all available
offering items dor them for an edition, specified in json configuration files
cyber.platform.cfg.json and cyber.platform.cfg.defaults.json.

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

2 / 29

File name File description

05.create-user-activate.sh
Creates a user for MyBashCustomer and activate them by setting a password. The script asks for
username to create.

06.get-tenant-usage.sh Gets usage for the root tenant.

07.create-report-retrieve.sh Create an one time report to dave for the root tenant, wait till its creation and download.

LICENSE The license for the code. It's MIT license.

README.md This file.

cyber.platform.cfg.defaults.json
Contains default configuration values for the scripts. They are used when the values are not
defined in cyber.platform.cfg.json file.

cyber.platform.cfg.json Contains configuration values for the scripts.

The Acronis Cyber Platform API general workflow

Operation When/Period Prerequisites / Inputs

1
Create an API client under
which an integration will be
authorized

Initially.

Periodically if security policies require your
company to regenerate all passwords each X
months.

Through the API or the Management Portal for
ACC 9.0 and greater.

Login and password with a needed level of
access in Acronis Cyber Cloud.

Usually, it's a service Admin account under your
company’s Partner tenant in Acronis Cyber
Cloud.

2 Issue an access token

1. Before the first API Call which is not
connected to the authorization flow

2. Each time when your token is near to be
expired.

Your API Client credentials

3 Make API calls
An access token issued using your API Client
credentials

Prerequisites and basis information
To access the API we use curl utility, to process JSON, we use jq utility. So, please, be sure that you have curl and jq available.

To simplify code basis functions to call the API have created: _get_api_call_basic, _get_api_call_bearer,
_get_api_call_bearer_with_response_code, _post_api_call_basic, _post_api_call_bearer and _put_api_call_bearer as well
as other utility functions.

You can find descriptions and code at the end of the article.

To run the scripts, you need to edit or create the cyber.platform.cfg.json file to provide base parameters. At minimum you need to
change base_url to your data center URL. The global variables _base_url initialized from the config file and used for all API requests. All
other values can remain unchanged. A cyber.platform.cfg.json file example:

{
 "base_url": "https://dev-cloud.acronis.com/",
 "partner_tenant": "partner",
 "customer_tenant": "customer",
 "edition": "standard"
}

The API Call trace functionality is also available. By default, API calls are not traced as trace set to 0 in
cyber.platform.cfg.defaults.json file, which you might create, but you can override it in cyber.platform.cfg.json file if you need
it. As soon as its enabled you will see in STDERR curl API calls with all parameters as well as a raw response form the calls.

A cyber.platform.cfg.defaults.json file example:

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

3 / 29

{
 "base_url": "https://dev-cloud.acronis.com/",
 "partner_tenant": "partner",
 "customer_tenant": "customer",
 "edition": "standard",
 "trace": 0
}

Exercise 1: Create an API Client to access the API

Implementation details

A JWT token with a limited time to life approach is used to securely manage access of any API clients, like our scripts, for the Acronis Cyber
Cloud. Using a login and password for a specific user is not a secure and manageable way to create a token, but technically it's possible.
Thus, we create an API client with a client id and a client secret to use as credentials to issue a JWT token. To create an API Client, we call the
/clients end-point with POST request specifying in the JSON body of the request a tenant we want to have access to. To authorize this the
request, the Basic Authorization with user login and password for Acronis Cyber Cloud is used.

In the following code block a login and a password are requested from a command line and use it for a Basic Authorization for following
HTTP requests.

Ask the user for login details
To use for Basic Authentication
To create an API Client
printf "\n"
read -rp 'Login: ' _login
read -rsp 'Password: ' _password
printf "\n\n"

In those scripts it is expected that the Acronis Developer Sandbox is used. It is available for registered developers at Acronis Developer
Network Portal. So the base URL for all requests (https://devcloud.acronis.com/) is used. Please, replace it with correct URL for your
production environment if needed. For more details, please, review the Authenticating to the platform via the Python shell tutorial from the
Acronis Cyber Platform documentation.

For demo purposes, this script issues an API client for a tenant for a user for whom a login and a password are specified. You should add your
logic as to what tenant should be used for the API Client creation.

Request self-ifo from API using Basic Authentication
GET call using function defined in basis_functions.sh
with following parameters
$1 - an API endpoint to call
$2 - a login for Basic Authentication
$3 - a password for Basic Authentication
The result is going to jq utility to extract JSON property
Please NOTE, that this property is retrieved with quotas
_tenant_id=$(_get_api_call_basic "api/2/users/me" "${_login}" "${_password}" | jq '.tenant_id')

Construct JSON to request an API Client creation
_json='{
 "type": "agent",
 "tenant_id": '$_tenant_id',
 "token_endpoint_auth_method": "client_secret_basic",
 "data": {
 "client_name": "bash.App"
 }
 }'

In Acronis Cyber Cloud 9.0 API Client credentials can be generated in the Management Portal.

Creating an API Client is a one-time process. As the API client is used to access the API, treat it as credentials and store
securely. Also, do not store the login and password in the scripts itself.



https://developer.acronis.com/sandbox/
https://developer.acronis.com/
https://devcloud.acronis.com/
https://developer.acronis.com/doc/platform/management/v2/#/http/developer-s-guide/authenticating-to-the-platform-via-the-python-shell

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

4 / 29

To create an API Client
GET call using function defined in basis_functions.sh
with following parameters
$1 - an API endpoint to call
$2 - a login for Basic Authentication
$3 - a password for Basic Authentication
The result is stored in api_client.json file
_post_api_call_basic "api/2/clients" \
 "${_login}" "${_password}" \
 "${_json}" \
 "application/json" > api_client.json

Step-by-step execution and checks

1. Open any available bash environment: Linux, Mac or Windows with Windows Subsystem for Linux.
2. Copy code directory to your local system and ensure that all .sh files are executable. Your directory listing should looks like bellow.

3. Edit cyber.platform.cfg.json file to enter your base_url aka your data center URL for API calls. All other options remain
unchanged.

4. Type ./01.c and press Tab, it should autocomplete to the ./01.create-api-client.sh.
5. Press Enter. You should see request for login. Type it and press Enter. You should see request for password. Type it and press Enter

client_name value defines the name you will see in the ACC 9.0 Management Console. For real integrations, please,
name it carefully to have a way to identify it in a future.



A generated client is inherited access rights from a user used for the generation but it's disconnected from them. You
don't need to issue a new client even if the user account is removed from Acronis Cloud.



Treat API Clients as a specific service account with access to your cloud. All internal security policies applied to your
normal account operations should be in place for API Clients. Thus, don't create new API Clients if you don't really
required and disable/delete unused API Clients through the Management Console or API Calls.



You can receive a client_secret only once, just at the issue time. If you loose your client_secret further you must
reset secret for the client through the Management Console or API Calls. Please, be aware, that all the tokens will be
invalidated.



You need to securely store the received credentials. For simplicity of the demo code, a simple JSON format is used for
api_client.json file. Please remember to implement secure storage for your client credentials.



Base Acronis Cyber Platform API operations with bash.md 3/19/2020

5 / 29

6. If you enter login and password correctly, the script just makes a series of API calls silently and exit. If you make a mistake, you receive
a detailed error description. For example, below a 401 Unauthorized error, which means your login or/and password are incorrect.

7. Type jq < api_client.json and press Enter. You should see highlighted JSON file with an API Client information. If you can see
something similar to picture bellow, you successfully created an API Client and can follow to the next exercise.

Exercise 2: Issue a token to access the API

Implementation details

A client_id and a client_secret can be used to access the API using the Basic Authorization but it's not a secure way as we discussed
above. It's more secure to have a JWT token with limited life-time and implement a renew/refresh logic for that token.

To issue a token /idp/token end-point is called using POST request with param grant_type equal client_credentials and content type
application/x-www-form-urlencoded with Basic Authorization using a client_id as a user name and a client_secret as a password.

Pipe JSON from file, extract JSON property, remove quotas from the property's value
_client_id=$(jq '.client_id' < api_client.json | sed -e 's/^"//' -e 's/"$//')
_client_secret=$(jq '.client_secret' < api_client.json | sed -e 's/^"//' -e 's/"$//')

To issue a token
POST call using function defined in basis_functions.sh
with following parameters
$1 - an API endpoint to call
$2 - a login for Basic Authentication
$3 - a password for Basic Authentication
$4 - POST data
$5 - Content-Type
The result is stored in api_token.json file
_post_api_call_basic "api/2/idp/token" \
 "${_client_id}" "${_client_secret}" \
 "grant_type=client_credentials" \
 "application/x-www-form-urlencoded" > api_token.json

You need to securely store the received token. For simplicity of the demo code, the received JSON format is used
api_token.json file. Please implement secure storage for your tokens.



Base Acronis Cyber Platform API operations with bash.md 3/19/2020

6 / 29

Assuming that the token is stored in the JSON response format as above, it can be done using the following functions set.

expires_on is a time when the token will expire in Unix time format -- seconds from January 1, 1970. Here we assume that we will
renew/refresh a token 15 minutes before the expiration time.

Issue an authorization token
Expect that an API client information are stored
in native API output format in api_client.json file
$1 - base URL
_issue_token() {

 local _client_id
 local _client_secret

 # Pipe JSON from file, extract JSON property, remove trilling quotas from the property's value
 _client_id=$(jq '.client_id' < api_client.json | sed -e 's/^"//' -e 's/"$//')
 _client_secret=$(jq '.client_secret' < api_client.json | sed -e 's/^"//' -e 's/"$//')

 # POST call to issue an authorization token
 # To use it you need have the following parameters passed
 # $1 - an API endpoint to call
 # $2 - a login for Basic Authentication
 # $3 - a password for Basic Authentication
 # $4 - POST data
 # $5 - Content-Type
 _post_api_call_basic "api/2/idp/token" \
 "${_client_id}" "${_client_secret}" \
 "grant_type=client_credentials" \
 "application/x-www-form-urlencoded" > api_token.json
}

Check if an authorization token in valid next 15 minutes (900 sec)
And if it's not, a new token will be issued
Expect that an authorization token information are stored
in native API output format in api_token.json file
Still works correctly if you didn't have a token file
_renew_token_if_needed() {

 local _expires_on
 local _current_unix_time
 local _time_left

 if test -f api_token.json; then
 # Pipe JSON from file, extract JSON property
 _expires_on=$(jq '.expires_on' < api_token.json)
 _current_unix_time=$(date +%s)
 _time_left=$_expires_on-$_current_unix_time
 if [[$_time_left -le 900]] ; then
 _issue_token
 fi
 else
 _issue_token
 fi
}

Step-by-step execution and checks

1. Type ./02 and press Tab, it should autocomplete to the ./02.issue_token.sh.

A token has time-to-live and must be renewed/refreshed before expiration time. The best practice is to check before
starting any API calls sequence and renew/refresh if needed.



Currently, the default time-to-live to a token for the API is 2 hours.

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

7 / 29

2. Press Enter. If api_client.json file exists and contains correct information, the script just makes a series of API calls silently and exit.
If you make a mistake, you receive a detailed error description.

3. Type jq < api_token.json and press Enter. You should see highlighted JSON file with a token information. If you can see
something similar to picture bellow, you successfully issued a token and can follow to the next exercise.

4. Including 01.basic_api_checks.sh file in each following scripts we ensure that a token will be reissued if needed before any API
call.

5. Check 01.basic_api_checks.sh file to verify that you can understand implementation details described above.

Exercise 3: Create partner, customer and user tenants and set offering items

Implementation details

So now we can securely access the Acronis Cyber Platform API calls. In this topic we discuss how to create a partner, a customer tenants and
enable for them all available offering items, and then create a user for the customer and activate the user by setting a password.

As we discussed above, before making a call to the actual API you need to ensure that an authorization token is valid. Please, use the
functions like those described above to do it.

Assuming that we create the API client for our root tenant, we start from retrieving the API Client tenant information using GET request to
/clients/${_client_id} end-point. Then, using received tenant_id information as a parameter and kind equal to partner, we build a
JSON body for POST request to /tenants end-point to create the partner. Next, we are going to enable all applications and offering items
for the tenants. Briefly, we take all available offering items for the parent tenant of the partner or the customer using GET request to
/tenants/${_tenant_id}/offering_items/available_for_child end-point with needed query parameters specifying edition and
kind of the tenant. Then, we need to enable these offering items for the partner or the customer using PUT request to
/tenants/${_tenant_id}/offering_items end-point with all offering items JSON in the request body and appropriate _tenant_id.

Call a function to pipe JSON from file, extract JSON property, remove quotas from the property's value
_access_token=$(_get_access_token_from_file api_token.json)

Call a function to pipe JSON from file, extract JSON property
_tenant_id=$(_get_tenant_id_from_file api_client.json)

Construct JSON to request a partner tenant creation
_json='{
 "name": "MyBashPartner",
 "parent_id": "'$_tenant_id'",
 "kind": "partner"
 }'

To create a partner tenant
POST API call using function defined in basis_functions.sh
with following parameters
$1 - an API endpoint to call
$2 - a bearer token Bearer Authentication
$3 - Content-Type

The following kind values are supported root, partner, folder, customer, unit.

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

8 / 29

This is absolutely the same process as for a customer, the only difference is kind equal to customer in the request body JSON and
/offering_items/available_for_child parameters.

$4 - POST data
The result is stored in partner.json file
_post_api_call_bearer "api/2/tenants" \
 "${_access_token}" \
 "application/json" \
 "${_json}" > partner.json

Get Kind of a tenant from config file
_kind=$(_config_get_value partner_tenant)

Get Edition we plan to enable from config file
_edition=$(_config_get_value edition)

To get a list of offering ite,s available for a child tenant
GET call using function defined in basis_functions.sh
with following parameters
$1 - an API endpoint to call
$2 - a bearer token Bearer Authentication
The result is stored in offering_items_available_for_child.json file
_get_api_call_bearer "api/2/tenants/${_tenant_id}/offering_items/available_for_child?kind=${_kind}&edition=${_e
 "${_access_token}" > offering_items_available_for_child.json

Replace "items" with "offering_items" as the following API call expects to have it as a root JSON element
 sed 's/"items"/"offering_items"/g' < offering_items_available_for_child.json > offering_items_to_put.json

Call a function to pipe JSON from file, extract JSON property
_partner_tenant_id=$(_get_id_from_file partner.json)

To update offering item for a tenant
PUT API call using function defined in basis_functions.sh
with following parameters
$1 - an API endpoint to call
$2 - a bearer token Bearer Authentication
$3 - Content-Type
$4 - PUT data
_put_api_call_bearer "api/2/tenants/${_partner_tenant_id}/offering_items" \
 "${_access_token}" \
 "application/json" \
 "$(cat offering_items_to_put.json)" > /dev/null

Call a function to pipe JSON from file, extract JSON property, remove quotas from the property's value
_access_token=$(_get_access_token_from_file api_token.json)

Call a function to pipe JSON from file, extract JSON property
_tenant_id=$(_get_id_from_file partner.json)

Construct JSON to request a customer tenant creation
_json='{
 "name": "MyBashCustomer",
 "parent_id": "'$_tenant_id'",
 "kind": "customer"
 }'

To create a customer tenant
POST API call using function defined in basis_functions.sh
with following parameters
$1 - an API endpoint to call
$2 - a bearer token Bearer Authentication
$3 - Content-Type
$4 - POST data
The result is stored in customer.json file
_post_api_call_bearer "api/2/tenants" \
 "${_access_token}" \
 "application/json" \
 "${_json}" > customer.json

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

9 / 29

By default, customers are created in a trial mode. To switch to production mode we need to update customer pricing. To perform this task,
we start from requesting current pricing using a GET request to /tenants/${_customer_tenant_id}/pricing end-point then change
mode property to production in the received JSON, then, finally, update the pricing using PUT request to
/tenants/${_customer_tenant_id}/pricing end-point with a new pricing JSON.

By default, a customer tenant is created in Trial mode
To Switching customer tenant to production mode
The pricing mode should be changed from trial to production

To get a current pricing for a customer tenant
GET call using function defined in basis_functions.sh
with following parameters
$1 - an API endpoint to call
$2 - a bearer token Bearer Authentication
The result is stored in customer_tenant_pricing.json file
_get_api_call_bearer "api/2/tenants/${_customer_tenant_id}/pricing" \
 "${_access_token}" > customer_tenant_pricing.json

Replace "trial" with "production" to have a JSON needed to switch the customer tenant to production mode
NOTE: THIS CHANGE IS IRREVERSIBLE
sed 's/"trial"/"production"/g' < customer_tenant_pricing.json > customer_tenant_pricing_to_put.json

Switching customer tenant to production mode
By updating pricing for a tenant
PUT API call using function defined in basis_functions.sh
with following parameters
$1 - an API endpoint to call
$2 - a bearer token Bearer Authentication
$3 - Content-Type
$4 - PUT data
_put_api_call_bearer "api/2/tenants/${_customer_tenant_id}/pricing" \
 "${_access_token}" \

Get Kind of tenant from config file
_kind=$(_config_get_value customer_tenant)

Get Edition we plan to enable from config file
_edition=$(_config_get_value edition)

To get a list of offering ite,s available for a child tenant
GET call using function defined in basis_functions.sh
with following parameters
$1 - an API endpoint to call
$2 - a bearer token Bearer Authentication
The result is stored in offering_items_available_for_customer_child.json file
_get_api_call_bearer "api/2/tenants/${_tenant_id}/offering_items/available_for_child?kind=${_kind}&edition=${_e
 "${_access_token}" > offering_items_available_for_customer_child.json

Replace "items" with "offering_items" as the following API call expects to have it as a root JSON element
sed 's/"items"/"offering_items"/g' < offering_items_available_for_customer_child.json > customer_offering_items_

Call a function to pipe JSON from file, extract JSON property
_customer_tenant_id=$(_get_id_from_file customer.json)

To update offering item for a tenant
PUT API call using function defined in basis_functions.sh
with following parameters
$1 - an API endpoint to call
$2 - a bearer token Bearer Authentication
$3 - Content-Type
$4 - PUT data
_put_api_call_bearer "api/2/tenants/${_customer_tenant_id}/offering_items" \
 "${_access_token}" \
 "application/json" \
 "$(cat customer_offering_items_to_put.json)" > /dev/null

Please, be aware, that this switch is non-revertible.

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

10 / 29

 "application/json" \
 "$(cat customer_tenant_pricing_to_put.json)" > /dev/null

Finally, we create a user for the customer. At first, we check if a login is available using GET request to /users/check_login end-point with
username parameter set to an expected login. Then, we create a JSON body for POST request to /users end-point to create a new user.

Call a function to pipe JSON from file, extract JSON property, remove quotas from the property's value
_access_token=$(_get_access_token_from_file api_token.json)

Set response code to 400 -- login availability check failed
_response_code=400

Ask for proposed username
printf "\n"
read -rp 'Username: ' _username
printf "\n\n"

To get an availability status of a username
GET call using function defined in basis_functions.sh
with following parameters
$1 - an API endpoint to call
$2 - a bearer token Bearer Authentication
_get_api_call_bearer_with_response_code "api/2/users/check_login?username=${_username}" \
 "${_access_token}" | {
 read -r _response_code
 read -r # here we would read the response body if need it
 if [[$_response_code != 204]] ; then
 _die "The username ${_username} is already exists."
 fi
 }

Here we can be only if _username is available

Call a function to pipe JSON from file, extract JSON property
_customer_tenant_id=$(_get_id_from_file customer.json)

Construct JSON to request a user creation
_json='{
 "tenant_id": "'$_customer_tenant_id'",
 "login": "'${_username}'",
 "contact": {
 "email": "'${_username}'@example.com",
 "firstname": "Bash",
 "lastname": "Example"
 }
 }'

To create a user
POST API call using function defined in basis_functions.sh
with following parameters
$1 - an API endpoint to call
$2 - a bearer token Bearer Authentication
$3 - Content-Type
$4 - POST data
The result is stored in user.json file
_post_api_call_bearer "api/2/users" \
 "${_access_token}" \
 "application/json" \
 "${_json}" > user.json

A created user is not active. To activate them we can either send them an activation e-mail or set them a password. The sending of an
activation e-mail is the preferable way, as in this case a user can set their own password by themselves. We use a set password way for demo
purposes and a fake e-mail is used. To set a password we send a simple JSON and POST request to /users/{_user_id}/password end-
point.

Call a function to pipe JSON from file, extract JSON property
_user_id=$(_get_id_from_file user.json)

Body JSON, to assign a password and activate the user

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

11 / 29

NEVER STORE A PASSWORD IN PLAIN TEXT FILE
THIS CODE IS FOR API DEMO PURPOSES ONLY
AS IT USES FAKE E-MAIL AND ACTIVATION E-MAIL CAN'T BE SENT
_json='{
 "password": "MyStrongP@ssw0rd"
 }'

To activate a user by setting a password
POST API call using function defined in basis_functions.sh
with following parameters
$1 - an API endpoint to call
$2 - a bearer token Bearer Authentication
$3 - Content-Type
$4 - POST data
_post_api_call_bearer "api/2/users/${_user_id}/password" \
 "${_access_token}" \
 "application/json" \
 "${_json}"

At this point, we've created a partner, a customer, enable offering items for them, create a user and activate them.

Step-by-step execution and checks

Create partner and enable all available standard edition offering items

1. Type ./03 and press Tab, it should autocomplete to the ./03.create-partner-tenant.sh.
2. Press Enter. If api_client.json file exists and contains correct information, the script just makes a series of API calls silently and exit.

If you make a mistake, you receive a detailed error description.
3. Type jq < partner.json and press Enter. You should see highlighted JSON file with a partner information. If you can see something

similar to picture bellow, you successfully created a partner.

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

12 / 29

4. Type jq < offering_items_available_for_child.json and press Enter. You should see highlighted JSON file with a available for
partner offering items information. Scroll down and look to possible values and fields.

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

13 / 29

5. Open the Management Portal and check that a new partner with name MyBashPartner was created and for them all offering items for
standard edition were enabled.

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

14 / 29

Create customer, enable all available standard edition offering items and switch to production mode

1. Type ./04 and press Tab, it should autocomplete to the ./04.create-customer-tenant.sh.
2. Press Enter. If api_client.json file exists and contains correct information, the script just makes a series of API calls silently and exit.

If you make a mistake, you receive a detailed error description.
3. Type jq < customer.json and press Enter. You should see highlighted JSON file with a customer information. If you can see

something similar to picture bellow, you successfully created a customer.

4. Type jq < offering_items_available_for_customer_child.json and press Enter. You should see highlighted JSON file with a
available for customer offering items information. Scroll down and look to possible values and fields.

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

15 / 29

5. Compare offering items available for partner anc customer using following command diff <(jq -S .
offering_items_available_for_child.json) <(jq -S . offering_items_available_for_customer_child.json). Note
the difference.

6. Open the Management Portal and check that a new customer with name MyBashCustomer was created under MyBashPartner and for
them all offering items for standard edition were enabled.

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

16 / 29

Create user, activate them by setting a password and enable backup services

1. Type ./05 and press Tab, it should autocomplete to the ./05.create-user-activate.sh.
2. Press Enter. You should see request for expected username. Type it and press Enter.

3. If api_client.json file exists and contains correct information, and a user with this username doesn't exists, the script just makes a
series of API calls silently and exit. If a user with provided username exists or any other issue exists, you receive a detailed error
description.

4. Type jq < user.json and press Enter. You should see highlighted JSON file with a user information. If you can see something
similar to picture bellow, you successfully created and activated a user.

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

17 / 29

5. Open the Management Portal and check that a new user with provided username was created under MyBashCustomer and it's in an
active state.

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

18 / 29

6. Copy 05.create-user-activate.sh file to 08.assign-user-backup-role.sh using following command cp 05.create-user-
activate.sh 08.assign-user-backup-role.sh.

7. In your preferred editor, open and edit the 08.assign-user-backup-role.sh. In our following instructions nano editor is used. To
open the file in nano editor, type nano 08.assign-user-backup-role.sh and press Enter.

8. Find the following code in the file

Call a function to pipe JSON from file, extract JSON property
_user_id=$(_get_id_from_file user.json)

and move it (cut & paste) directly after the following code

Call a function to pipe JSON from file, extract JSON property, remove quotas from the property's value
_access_token=$(_get_access_token_from_file api_token.json)

9. Then personal_tenant_id should be retrieved from user.json file. As there are not helper functions for that, jq and sed will be
used to retrieve. Enter the following code

_personal_tenant_id=$(jq '.personal_tenant_id' < user.json | sed -e 's/^"//' -e 's/"$//')

just after

The created user has no roles assigned. It means it can't use any service. To enable services/applications you need to
assign an appropriate role to a user. In next steps you will create a bash script to assign the created user backup_user
role to enable backup services.



All operations with the user account roles are located under the /users/{_user_id}/access_policies endpoint.

To build a JSON to assign a role for a user id and user personal_tenant_id need to be known. All these values can be
retrieved from the user.json file we've received as result of the user creation API call.



Base Acronis Cyber Platform API operations with bash.md 3/19/2020

19 / 29

Call a function to pipe JSON from file, extract JSON property
_user_id=$(_get_id_from_file user.json)

10. Now all the information to build a JSON body for our request to the API endpoint. Just after thr previous _personal_tenant_id code,
enter the following code

_json='{"items": [
 {"id": "00000000-0000-0000-0000-000000000000",
 "issuer_id": "00000000-0000-0000-0000-000000000000",
 "role_id": "backup_user",
 "tenant_id": "'${_personal_tenant_id}'",
 "trustee_id": "'${_user_id}'",
 "trustee_type": "user",
 "version": 0}
]}'

You can find more information regarding JSON format in the API documentation
https://developer.acronis.com/doc/platform/management/v2/#/http/models/structures/access-policy.

11. And finally as all the data ready, let's add code to call the API. To update a user access policy /users/{user_id}/access_policies
end-point is called using PUT request with Bearer Authentication and a JSON body.

12. Find the following code in the end of the file and copy it below the JSON

_post_api_call_bearer "api/2/users/${_user_id}/password" \
 "${_access_token}" \
 "application/json" \
 "${_json}"

13. Edit this code to make appropriate PUT call

_put_api_call_bearer "api/2/users/${_user_id}/access_policies" \
 "${_access_token}" \
 "application/json" \
 "${_json}"

14. Delete all other code below the edited. So finally you should have the following code in the file.

#!/bin/bash

#**
Copyright © 2019-2020 Acronis International GmbH. This source code is distributed under MIT software license.
#**

. 00.basis_functions.sh

. 01.basic_api_checks.sh

Call a function to pipe JSON from file, extract JSON property, remove quotas from the property's value
_access_token=$(_get_access_token_from_file api_token.json)

Call a function to pipe JSON from file, extract JSON property
_user_id=$(_get_id_from_file user.json)

_personal_tenant_id=$(jq '.personal_tenant_id' < user.json | sed -e 's/^"//' -e 's/"$//')

_json='{"items": [
 {"id": "00000000-0000-0000-0000-000000000000",
 "issuer_id": "00000000-0000-0000-0000-000000000000",
 "role_id": "backup_user",
 "tenant_id": "'${_personal_tenant_id}'",
 "trustee_id": "'${_user_id}'",
 "trustee_type": "user",
 "version": 0}
]}'

_put_api_call_bearer "api/2/users/${_user_id}/access_policies" \

https://developer.acronis.com/doc/platform/management/v2/#/http/models/structures/access-policy

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

20 / 29

 "${_access_token}" \
 "application/json" \
 "${_json}"

15. Save it. Exit the editor. Type ./08 and press Tab, it should autocomplete to the ./08.assign-user-backup-role.sh.
16. Press Enter. If api_client.json file exists and contains correct information, the script just makes a sAPI call and return current list of

the user access policies and exit. If you make a mistake, you receive a detailed error description.

17. Open the Management Portal and check that the user has the assigned role.

Exercise 4: Get a tenant usage

Implementation details

A very common task is to check a tenant’s usage. It's a simple task. We just need to make a GET request to
/tenants/${_tenant_id}/usages end-point, as result we receive a list with current usage information in JSON format.

Call a function to pipe JSON from file, extract JSON property, remove quotas from the property's value
_access_token=$(_get_access_token_from_file api_token.json)

Get Root tenant_id for the API Client
Pipe JSON from file, extract JSON property, remove quotas from the property's value
_tenant_id=$(_get_tenant_id_from_file api_client.json)

To get a tenant usage
GET call using function defined in basis_functions.sh
with following parameters
$1 - an API endpoint to call
$2 - a bearer token Bearer Authentication
The result is stored in "${_tenant_id}_usage.json" file
_get_api_call_bearer "api/2/tenants/${_tenant_id}/usages" \
 "${_access_token}" > "${_tenant_id}_usage.json"

The information about a service usage of the tenant, provided by the /tenants/${_tenant_id}/usages endpoint, is
updated on average every 5-6 hours.



It's very useful to store usage information for further processing. In our example we use response JSON format to store
it in a file.



Base Acronis Cyber Platform API operations with bash.md 3/19/2020

21 / 29

Step-by-step execution and checks

1. Type ./06 and press Tab, it should autocomplete to the ./06.get-tenant-usage.sh.
2. Press Enter. If api_client.json file exists and contains correct information, the script just makes a series of API calls silently and exit.

If you make a mistake, you receive a detailed error description.
3. Type jq < *_usage.json and press Enter. You should see highlighted JSON file with a usage information. If you can see something

similar to picture bellow, you successfully retrieve the usage.

Exercise 5: Create and download simple report

Implementation details

The reporting capability of the Acronis Cyber Cloud gives you advanced capabilities to understand usage. In the following simple example,
we create a one-time report in csv format, and then download it. To check other options, please, navigate to the Acronis Cyber Platform
documentation.

To create a report to save, we build a body JSON and make a POST request to /reports end-point. Then we look into stored reports with
specified $_report_id making a GET request to /reports/${_report_id}/stored endpoint.

Call a function to pipe JSON from file, extract JSON property, remove quotas from the property's value
_access_token=$(_get_access_token_from_file api_token.json)

Get Root tenant_id for the API Client
Call a function to pipe JSON from file, extract JSON property, remove quotas from the property's value
_tenant_id=$(_get_tenant_id_from_file api_client.json)

Construct JSON to create a report
_json='{
 "parameters": {
 "kind": "usage_current",
 "tenant_id": "'$_tenant_id'",
 "level": "accounts",
 "formats": [
 "csv_v2_0"
]
 },
 "schedule": {
 "type": "once"
 },
 "result_action": "save"
}'

To create a report
POST API call using function defined in basis_functions.sh
with following parameters
$1 - an API endpoint to call

https://developer.acronis.com/doc/platform/management/v2/#/http/developer-s-guide/managing-reports

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

22 / 29

$2 - a bearer token Bearer Authentication
$3 - Content-Type
$4 - POST data
The result is stored in created_report.json file
_post_api_call_bearer "api/2/reports" \
 "${_access_token}" \
 "application/json" \
 "${_json}" > created_report.json

Get report_id from saved file
Call a function to pipe JSON from file, extract JSON property, remove quotas from the property's value
_report_id=$(_get_id_from_file created_report.json)

Init $_report_status to have at least 1 loop execution
_report_status="not saved"

A report is not produced momently, so we need to wait for it to become saved
Here is a simple implementation for sample purpose expecting that
For sample purposes we use 1 report from stored -- as we use once report
while [[$_report_status != "saved"]] ; do

 # To get a saved report info
 # GET call using function defined in basis_functions.sh
 # with following parameters
 # $1 - an API endpoint to call
 # $2 - a bearer token Bearer Authentication
 # The result is stored in "${_report_id}_report.json" file
 _get_api_call_bearer "api/2/reports/${_report_id}/stored" \
 "${_access_token}" > "${_report_id}_report_status.json"

 _report_status=$(jq '.items[0].status' < "${_report_id}_report_status.json" | sed -e 's/^"//' -e 's/"$//')

 sleep 2s
done

For sample purposes we use 1 report from stored -- as we use once report
MUST BE CHANGED if you want to deal with scheduled one or you have multiple reports
_stored_report_id=$(jq '.items[0].id' < "${_report_id}_report_status.json" | sed -e 's/^"//' -e 's/"$//')

And finally, we download the report created using a GET request to /reports/${_report_id}/stored/${_stored_report_id} and save
it in ${_report_id}_report.csv file for further processing.

Download the report
The result is stored in "${_report_id}_report.csv" file
Response is gzip-ed so we need to add --compressed to have an output file decompressed
_base_url is loaded from config file in 00.basis_functions.sh
curl --compressed \
 -X GET \
 --url "${_base_url}api/2/reports/${_report_id}/stored/${_stored_report_id}" \
 -H "Authorization: Bearer ${_access_token}" \
 -o "${_report_id}_report.csv"

Step-by-step execution and checks

1. Type ./07 and press Tab, it should autocomplete to the ./07.create-report-retrieve.sh.
2. Press Enter. If api_client.json file exists and contains correct information, the script just makes a series of API calls silently and

then download report. If you make a mistake, you receive a detailed error description.

3. Type jq < created_report.json and press Enter. You should see highlighted JSON file with the crated report information. If you
can see something similar to picture bellow, you successfully created the report.

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

23 / 29

4. Type jq < *_report_status.json and press Enter. You should see highlighted JSON file with the stored report information.

5. Type cat *.csv and press Enter. You should see the downloaded CSV report.

Exercise 6: Add marks to your API calls for better support

Implementation details

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

24 / 29

It's technically possibly to identify your API calls as they are connected to your API Client. But still it's required a lot of efforts and hard to find
in your Audit log at the Management Portal for your. Thus to better support your development effort it would be a great idea to identify your
integrations and API calls somehow. Traditional way to do it in a RESTFul word is using the User-Agent header.

There are common recommendations how to build your User-Agent header:

User-Agent: <product>/<product-version> <comment>

For example, for our hands-on lab, you can use:

User-Agent: Training/1.0 Acronis #CyberFit Developers Business Automation Training

To implement it using our bash examples, we need just add the header to each curl call using API:

-H "User-Agent: Training/1.0 Acronis #CyberFit Developers Business Automation Training"

Step-by-step execution and checks

1. Copy 00.basis_functions.sh file to 00.basis_functions_with_user_agent.sh using following command cp
00.basis_functions.sh 00.basis_functions_with_user_agent.sh.

2. In your preferred editor, open and edit the 00.basis_functions_with_user_agent.sh. In our following instructions nano editor is
used. To open the file in nano editor, type nano 00.basis_functions_with_user_agent.sh and press Enter.

3. Find all the places in the file with

-H "Accept: application/json" \

and right after this line insert the following

-H "User-Agent: Training/1.0 Acronis #CyberFit Developers Business Automation Training" \

4. Save the file. Exit the editor.
5. Rename 00.basis_functions.sh file to 00.basis_functions_old.sh using following command mv 00.basis_functions.sh
00.basis_functions_old.sh.

6. Rename 00.basis_functions_with_user_agent.sh file to 00.basis_functions.sh using following command mv
00.basis_functions_with_user_agent.sh 00.basis_functions.sh.

7. So now, you replace in all the code files, the basis functions without User-Agent to the functions with User-Agent header.

8. To check how our User-Agent affects an audit log you can see in the Management Portal, let's create a new API Client.
9. Rename api_client.json file to api_client_old.json using following command mv api_client.json api_client_old.json.

We ara planing to delete the new API Client, so we need to store our previous one.
10. Type ./01.c and press Tab, it should autocomplete to the ./01.create-api-client.sh.
11. Press Enter. You should see request for login. Type it and press Enter. You should see request for password. Type it and press Enter
12. If you enter login and password correctly, the script just makes a series of API calls silently and exit. If you make a mistake, you receive

a detailed error description. For example, below a 401 Unauthorized error, which means your login or/and password are incorrect.
13. Type jq < api_client.json and press Enter. You should see highlighted JSON file with an API Client information.

Please, for a real integration, use your real integration name, a specific version and suitable comments to simplify your
support.



We will create an API Client in the next step for demo purposes only. Don't forget to delete it after the exercise.

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

25 / 29

14. Login to the Management Portal and check how our request are represented in the Audit log.

Summary
Now you know how to use base operations with the Acronis Cyber Platform API:

1. Create an API Client for the Acronis Cyber Platform API access
2. Issue a token for secure access for the API
3. Establish a simple procedure to renew/refresh the token
4. Create a partner and a customer tenants and enable offering items for them.
5. Create a user for a customer tenant and activate them.
6. Enable services for a user by assigning a role.
7. Receive simple usage information for a tenant.
8. Create and download reports for usage.

Get started today, register on the Acronis Developer Portal and see the code samples available, you can also review solutions available in the
Acronis Cyber Cloud Solutions Portal.

Appendix: Basis functions used in code
As you can see, to simplify code we created some basis functions to call the API. Below, you can find those functions with base descriptions

_die function is used to output error to the STDERR and stop the execution of scripts

Print errors info to STDERR and exit execution
_die() { printf ":: %s\n\n" "$*" >&2; exit 1; }

_config_get_value function is used to read values from configuration files

Get a value for from config files
_config_get_value() {

 if test -f cyber.platform.cfg.json ; then
 _value=$(jq ."${1}" < cyber.platform.cfg.json | sed -e 's/^"//' -e 's/"$//')
 if [["$_value" = "null"]]; then
 if test -f cyber.platform.cfg.defaults.json ; then
 _value=$(jq ."${1}" < cyber.platform.cfg.defaults.json | sed -e 's/^"//' -e 's/"$//')

 if [["$_value" = "null"]]; then
 _die "A required value for ${1} doesn't exist in cyber.platform.cfg.json and cyber.platform.cfg.defaults.j
 fi

Don't forget to move the old client JSON file back and delete the new client if you don't plan to use it further.

https://developer.acronis.com/
https://solutions.acronis.com/

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

26 / 29

_call and _response functions are used to implement API calls trace

Implement API Call tracing capability
_call(){

 if [[$_config_trace = 1]]; then
 printf "API call trace::\n%s\n\n" "$*" >&2
 fi

 "$@"
}

Implement API Call responses tracing capability
_response(){

 if [[$_config_trace = 1]]; then
 printf "API response trace::\n%s\n\n" "$*" >&2
 fi
}

_get_api_call_basic function is used to make a GET API call with a Basic Authentication using endpoint, login and password provided.
The function checks response error codes and return only a response body.

_get_api_call_bearer function is used to make a GET API call with a Bearer Authentication using endpoint, bearer token provided. The
function checks response error codes and return only a response body.

 else
 _die "A required value for ${1} doesn't exist in file cyber.platform.cfg.json. But the default configuratio
 fi
 fi
 else
 _die "The file cyber.platform.cfg.json. Please create a config file."
 fi

 echo "${_value}"
}

GET API call with Basic Authentication
$1 - an API endpoint to call
$2 - a login for Basic Authentication
$3 - a password for Basic Authentication
_get_api_call_basic () {

 local _response_body
 local _response_code

 _call \
 curl -s \
 -X GET \
 --url "${_base_url}$1" \
 -u "${2}:${3}" \
 -H "Accept: application/json" \
 -w "\n%{http_code}" | {
 read -r _response_body
 read -r _response_code

 _response "${_response_body}"

 if [[$_response_code = 20*]] ; then
 echo "${_response_body}"
 else
 _die "The GET API Call with the endpoint ${1} is unsuccessful with response code: ${_response_code}." "${_r
 fi
 }
}

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

27 / 29

_get_api_call_bearer_with_response_code function is used to make a GET API call with a Bearer Authentication using endpoint,
bearer token provided, but it returns not only a response body, but a response code as well.

_post_api_call_basic function is used to make a POST API call with a Basic Authentication using endpoint, login and password
provided, POST data and content-type of the request body. The function checks response error codes and return only a response body.

GET API call with Bearer Authentication
$1 - an API endpoint to call
$2 - a bearer token Bearer Authentication
_get_api_call_bearer () {

 local _response_body
 local _response_code

 _call \
 curl -s \
 -X GET \
 --url "${_base_url}${1}" \
 -H "Authorization: Bearer ${2}" \
 -H "Accept: application/json" \
 -w "\n%{http_code}" | {
 read -r _response_body
 read -r _response_code

 _response "${_response_body}"

 if [[$_response_code = 20*]] ; then
 echo "${_response_body}"
 else
 _die "The GET API Call with the endpoint ${1} is unsuccessful with response code: ${_response_code}." "${_
 fi
 }
}

GET API call with Bearer Authentication
$1 - an API endpoint to call
$2 - a bearer token Bearer Authentication
_get_api_call_bearer_with_response_code () {

 local _response_body
 local _response_code

 _call \
 curl -s \
 -X GET \
 --url "${_base_url}${1}" \
 -H "Authorization: Bearer ${2}" \
 -H "Accept: application/json" \
 -w "\n%{http_code}" | {
 read -r _response_body
 read -r _response_code

 _response "${_response_body}"

 if [[$_response_code = 20*]] ; then
 printf "%s\n%s" "${_response_code}" "${_response_body}"
 else
 _die "The GET API Call with the endpoint ${1} is unsuccessful with response code: ${_response_code}." "${_
 fi
 }
}

POST API call with Basic Authentication
$1 - an API endpoint to call
$2 - a login for Basic Authentication
$3 - a password for Basic Authentication
$4 - POST data
$5 - Content-Type
_post_api_call_basic () {

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

28 / 29

_post_api_call_bearer function is used to make a POST API call with a Bearer Authentication using endpoint, bearer token provided,
POST data and content-type of the request body. The function checks response error codes and return only a response body.

_put_api_call_bearer function is used to make a PUT API call with a Bearer Authentication using endpoint, bearer token provided, PUT
data and content-type of the request body. The function checks response error codes and return only a response body.

 local _response_body
 local _response_code

 _call \
 curl -s \
 -X POST \
 --url "${_base_url}${1}" \
 -u "${2}:${3}" \
 -H "Accept: application/json" \
 -H "Content-type: $5" \
 --data-raw "$4" \
 -w "\n%{http_code}" | {
 read -r _response_body
 read -r _response_code

 _response "${_response_body}"

 if [[$_response_code = 20*]] ; then
 echo "${_response_body}"
 else
 _die "The POST API Call with the endpoint ${1} is unsuccessful with response code: ${_response_code}." "${_
 fi
 }
}

POST API call with Bearer Authentication
$1 - an API endpoint to call
$2 - a bearer token Bearer Authentication
$3 - Content-Type
$4 - POST data
_post_api_call_bearer () {

 local _response_body
 local _response_code

 _call \
 curl -s \
 -X POST \
 --url "${_base_url}${1}" \
 -H "Authorization: Bearer ${2}" \
 -H "Accept: application/json" \
 -H "Content-type: ${3}" \
 --data-raw "${4}" \
 -w "\n%{http_code}" | {
 read -r _response_body
 read -r _response_code

 _response "${_response_body}"

 if [[$_response_code = 20*]] ; then
 echo "${_response_body}"
 else
 _die "The POST API Call with the endpoint ${1} is unsuccessful with response code: ${_response_code}." "${_
 fi
 }
}

PUT API call with Bearer Authentication
$1 - an API endpoint to call
$2 - a bearer token Bearer Authentication
$3 - Content-Type
$4 - POST data

Base Acronis Cyber Platform API operations with bash.md 3/19/2020

29 / 29

_put_api_call_bearer () {

 local _response_body
 local _response_code

 _call \
 curl -s \
 -X PUT \
 --url "${_base_url}${1}" \
 -H "Authorization: Bearer ${2}" \
 -H "Accept: application/json" \
 -H "Content-type: ${3}" \
 --data-raw "${4}" \
 -w "\n%{http_code}" | {
 read -r _response_body
 read -r _response_code

 _response "${_response_body}"

 if [[$_response_code = 20*]] ; then
 echo "${_response_body}"
 else
 _die "The PUT API Call with the endpoint ${1} is unsuccessful with response code: ${_response_code}." "${_r
 fi
 }
}

Copyright © 2019-2020 Acronis International GmbH. This is distributed under MIT license.

