
FIPS
Compliance
Check

01
Best Practices Guide

TRU Best Practices Guide | 2025 01 | FIPS Compliance Check2 3

FIPS 140-2 is a NIST standard that specifies the security requirements for
cryptographic modules, ensuring that sensitive data is protected effectively.
This guide covers essential aspects of FIPS compliance, including the use
of FIPS-certified cryptographic providers and the avoidance of non-FIPS
algorithms. It provides a comprehensive overview of setting up a FIPS-
compliant environment, with detailed steps for configuring cryptographic
providers in Java, Go and Python.

Additionally, the document lists approved cryptographic algorithms and
libraries, such as AES, RSA and ECDSA, along with the Bouncy Castle
FIPS Provider and OpenSSL with FIPS support. By following the guidance
provided, developers can ensure their software meets the necessary security
standards and helps protect sensitive data.

This document also delves into the validation process for FIPS 140-2,
outlining the steps required to obtain certification for cryptographic modules.
It includes information on the role of Cryptographic Module Validation
Program (CMVP) and how developers can submit their modules for testing
and evaluation. This guide emphasizes the importance of continuous
compliance, detailing how to maintain FIPS 140-2 certification through
regular updates and security assessments.

Introduction

01. FIPS compliance summary for developers

02. Key points about FIPS compliance

03. Set up FIPS-compliant environment

04. Approaches to FIPS in Java

4.1 Set up FIPS-compliant environment

4.2 Install a FIPS-validated security provider

4.3. Configure your service for FIPS

4.4 Verify FIPS mode

4.5 Summary cheat sheet

05. Approaches to FIPS in Go

5.1 Set up FIPS-compliant environment
see paragraph 2

5.2 Use Go with BoringCrypto (BoringSSL)

5.3 Use cgo + OpenSSL FIPS

5.4 FIPS-approved algorithms and TLS

5.5 Common steps to verify FIPS
compliance

5.6 Summary

06. Approaches to FIPS in Python

6.1 Use the system’s FIPS-enabled OpenSSL

6.2 Use a custom-built Python with FIPS

6.3. Third-party crypto libraries
(PyCryptodome, cryptography, etc.)

6.4 Common steps for FIPS in Python

6.5 Summary cheat sheet

07. Approaches to FIPS in Windows

7.1 Enabling FIPS Mode in Windows

7.2 Verifying FIPS Mode on Windows

7.3 Practical considerations

08. Quick tips

09. List of RHEL 9 applications using
 cryptography that are not compliant with
 FIPS 140-3

About TRU

This guide is designed
to assist developers in
ensuring their software
meets the stringent
requirements of the
Federal Information
Processing Standard
(FIPS) 140-2.

IntroductionContents

TRU Best Practices Guide | 2025 01 | FIPS Compliance Check4 5

security.provider.1=com.sun.net.ssl.internal.ssl.Provider

security.provider.2=org.bouncycastle.jcajce.provider.

BouncyCastleFipsProvider

xpack.security.enabled: true

xpack.ssl.keystore.path: /path/to/keystore.jks

xpack.ssl.keystore.password: changeit

xpack.ssl.truststore.path: /path/to/truststore.jks

xpack.ssl.truststore.password: changeit

export JAVA_HOME=/path/to/fips-enabled-java
fips-mode-setup --check

FIPS mode is enabled.

cat /proc/sys/crypto/fips_enabled

1. Ensure the host is FIPS compliant: The OS should be installed with a FIPS-
enabled kernel module, OpenSSL should use a FIPS-compliant provider,
and your software should rely on system cryptographic mechanisms.

2. If not using system cryptography, any custom cryptographic components
should be FIPS compliant.

3. MD5 is allowed but only for nonsecurity purposes, such as file-integrity
checks.

See section 02

Use a FIPS-compliant JDK, such as OpenJDK or Oracle JDK with FIPS-certified
cryptographic providers.

Java requires a FIPS-certified cryptographic module. The commonly used
ones are:

 • Bouncy Castle FIPS Provider: Add the Bouncy Castle FIPS provider to
your JVM.

 • FIPS-Validated JCE (Java Cryptography Extension).

Configure the provider in the java.security file:

Here is an example of how to configure Logstash. In the same way, configure
your service.

Modify Logstash to use the FIPS-enabled JVM and cryptographic modules:

1. Set the Java home:

 • Point Logstash to the FIPS-compliant JVM in logstash.yml or the
environment variable:

2. Enable SSL/TLS with FIPS-certified libraries:

 • Ensure that any SSL / TLS communications use the FIPS-certified
cryptographic libraries.

 • Update the logstash.yml or pipeline configuration files with the proper
certificates and keys:

3. Check plugins

Ensure all Logstash plugins that use cryptography (e.g., beats, elasticsearch
output) are compatible with FIPS mode.

 • FIPS 140-2 is a NIST standard for cryptographic modules.

 • Your Java environment should use only FIPS-certified crypto providers
(e.g., Bouncy Castle FIPS, SunPKCS11 with an approved module, etc.).

 • Non-FIPS algorithms (like MD5, RC4, etc.) should be avoided in security
contexts.

 • Typically, the OS should also be running in FIPS mode (e.g., RHEL, Ubuntu
with fips=1).

On RHEL / CentOS, for example:

Verification

After the system starts, check that FIPS mode is enabled:

or

FIPS compliance
summary for
developers

Approaches
to FIPS in Java

Set up FIPS-compliant
environment

Install a FIPS-validated
security provider

Configure your service
for FIPS

01 04

4.1

4.2

4.3

02

03

Key points about
FIPS compliance

Set up
FIPS-compliant
environment sudo grubby --update-kernel=ALL --args=”fips=1”

sudo dracut -f

sudo reboot

TRU Best Practices Guide | 2025 01 | FIPS Compliance Check6 7

cat Makefile

MY_CLASSPATH := -cp /usr/local/share/logstash-fips/bc-fips-2.0.0.jar:/usr/local/share/logstash-fips/
bctls-fips-2.0.19.jar:/usr/local/share/logstas-fips/bcutil-fips-2.0.3

test_tls_regular:

 java \

 test_tls.java

test_tls_bcfips:

 java \

 -Djava.security.properties=/usr/local/share/logstash-fips/java.security \

 -Dorg.bouncycastle.fips.approved_only=true \

 ${MY_CLASSPATH} \

 test_tls.java

test_algorithms_regular:

 java \

 test_algorithms.java

test_algorithms_bcfips:

 java \

 -Djava.security.properties=/usr/local/share/logstash-fips/java.security \

 -Dorg.bouncycastle.fips.approved_only=true \

 ${MY_CLASSPATH} \

 test_algorithms.java

make test_algorithms_regular

java \

 test_algorithms.java

> Checking if JVM is in FIPS mode...

> FIPS mode is NOT enabled.

>Testing FIPS-Unapproved Algorithms:

> MD5 is available (Provider: SUN version 11)

> DES is available (Provider: SunJCE version 11)

> RC4 is available (Provider: SunJCE version 11)

> Testing FIPS-Approved Algorithms:

> SHA-256 is available (Provider: SUN version 11)

> AES is available (Provider: SunJCE version 11)

1. Verify FIPS mode:

The first test (test_tls_regular) only displays availability of FIPS cryptography
provider in the current runtime and availability of algorithms and cipher suites.

The second test (test_tls_bcfips) tries to establish a TLS connection
to dh1024.badssl.com — this host can only use DH1024 key exchange
mechanism.

Verify FIPS mode4.4

test_algorithms.java test_tls.java

make test_algorithms_bcfips

java \

 -Djava.security.properties=/usr/local/share/logstash-fips/java.security \

 -Dorg.bouncycastle.fips.approved_only=true \

 -cp /usr/local/share/logstash-fips/bc-fips-2.0.0.jar:/usr/local/share/logstash-fips/bctls-fips-2.0.19.
jar:/usr/local/share/logstas-fips/bcutil-fips-2.0.3 \

 test_algorithms.java

> Checking if JVM is in FIPS mode...

> FIPS mode is enabled (Provider: BCFIPS)

> Testing FIPS-Unapproved Algorithms:

> MD5 is available (Provider: SUN version 11)

> DES is available (Provider: SunJCE version 11)

> RC4 is available (Provider: SunJCE version 11)

> Testing FIPS-Approved Algorithms:

> SHA-256 is available (Provider: BCFIPS version 2.0)

> AES is available (Provider: BCFIPS version 2.0)

make test_tls_regular

java \

 test_tls.java

> TLS Handshake Successful!

> TLS Version: TLSv1.2

> Cipher Suite: TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

> Server Certificate Details:

> Subject: CN=*.badssl.com

> Issuer: CN=R11, O=Let’s Encrypt, C=US

> Expiry Date: Mon Apr 07 03:02:50 UTC 2025

> Serial Number: 406704991044954629750146633906297610196195

> Subject: CN=R11, O=Let’s Encrypt, C=US

> Issuer: CN=ISRG Root X1, O=Internet Security Research Group, C=US

> Expiry Date: Fri Mar 12 23:59:59 UTC 2027

> Serial Number: 184083759606652600789093070426744763640

make test_tls_bcfips

java \

 -Djava.security.properties=/usr/local/share/logstash-fips/java.security \

 -Dorg.bouncycastle.fips.approved_only=true \

 -cp /usr/local/share/logstash-fips/bc-fips-2.0.0.jar:/usr/local/share/logstash-fips/bctls-fips-2.0.19.
jar:/usr/local/share/logstas-fips/bcutil-fips-2.0.3 \

 test_tls.java

> TLS connection failed: Could not generate DH keypair

javax.net.ssl.SSLException: Could not generate DH keypair

 at java.base/sun.security.ssl.Alert.createSSLException(Alert.java:133)

 at java.base/sun.security.ssl.TransportContext.fatal(TransportContext.java:353)

http://dh1024.badssl.com/

TRU Best Practices Guide | 2025 01 | FIPS Compliance Check8 9

 at java.base/sun.security.ssl.TransportContext.fatal(TransportContext.java:296)

 at java.base/sun.security.ssl.TransportContext.fatal(TransportContext.java:291)

 at java.base/sun.security.ssl.SSLSocketImpl.handleException(SSLSocketImpl.java:1689)

 at java.base/sun.security.ssl.SSLSocketImpl.startHandshake(SSLSocketImpl.java:471)

 at java.base/sun.security.ssl.SSLSocketImpl.startHandshake(SSLSocketImpl.java:427)

 at TLSSecurityChecker.checkTLSCompliance(test_tls.java:22)

 at TLSSecurityChecker.main(test_tls.java:11)

 at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

 at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.
java:62)

 at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.
invoke(DelegatingMethodAccessorImpl.java:43)

 at java.base/java.lang.reflect.Method.invoke(Method.java:566)

 at jdk.compiler/com.sun.tools.javac.launcher.Main.execute(Main.java:404)

 at jdk.compiler/com.sun.tools.javac.launcher.Main.run(Main.java:179)

 at jdk.compiler/com.sun.tools.javac.launcher.Main.main(Main.java:119)

Caused by: java.lang.RuntimeException: Could not generate DH keypair

 at java.base/sun.security.ssl.DHKeyExchange$DHEPossession.<init>(DHKeyExchange.java:164)

 at java.base/sun.security.ssl.DHClientKeyExchange$DHClientKeyExchangeProducer.
produce(DHClientKeyExchange.java:185)

 at java.base/sun.security.ssl.ClientKeyExchange$ClientKeyExchangeProducer.
produce(ClientKeyExchange.java:65)

 at java.base/sun.security.ssl.SSLHandshake.produce(SSLHandshake.java:436)

 at java.base/sun.security.ssl.ServerHelloDone$ServerHelloDoneConsumer.consume(ServerHelloDone.
java:182)

 at java.base/sun.security.ssl.SSLHandshake.consume(SSLHandshake.java:392)

 at java.base/sun.security.ssl.HandshakeContext.dispatch(HandshakeContext.java:443)

 at java.base/sun.security.ssl.HandshakeContext.dispatch(HandshakeContext.java:421)

 at java.base/sun.security.ssl.TransportContext.dispatch(TransportContext.java:183)

 at java.base/sun.security.ssl.SSLTransport.decode(SSLTransport.java:172)

 at java.base/sun.security.ssl.SSLSocketImpl.decode(SSLSocketImpl.java:1506)

 at java.base/sun.security.ssl.SSLSocketImpl.readHandshakeRecord(SSLSocketImpl.java:1416)

 at java.base/sun.security.ssl.SSLSocketImpl.startHandshake(SSLSocketImpl.java:456)

 ... 10 more

Caused by: java.security.InvalidAlgorithmParameterException: Attempt to create key of less than 2048
bits: DH

 at org.bouncycastle.jcajce.provider.ProvDH$KeyPairGeneratorSpi.initialize(Unknown Source)

 at java.base/sun.security.ssl.DHKeyExchange$DHEPossession.<init>(DHKeyExchange.java:156)

 ... 22 more

Caused by: org.bouncycastle.crypto.fips.FipsUnapprovedOperationError: Attempt to create key of less than
2048 bits: DH

 at org.bouncycastle.crypto.fips.FipsDH$KeyPairGenerator.<init>(Unknown Source)

1. OS FIPS mode:
 • e.g. fips=1, reboot, verify /proc/sys/crypto/fips_enabled == 1.

2. Install / use FIPS-certified Java:
 • Vendor or custom JDK with FIPS modules (IBM, Red Hat, Azul, etc.).

3. Configure java.security:
 • Add a FIPS provider at highest priority.

 • Set org.bouncycastle.fips.approved_only=true if using BC FIPS.

4. Restrict algorithms:

 • No MD5, no SHA-1 for secure hashing, no RC4, etc.

 • Use FIPS-approved cipher suites in TLS.

5. Test and validate:
 • Check logs for crypto errors.

 • Confirm your crypto calls are using the FIPS provider.

6. Document the entire setup for compliance audits:
 • JDK version, provider settings, code changes, OS-level FIPS mode, etc.

1. Find a FIPS-enabled Go release
 • Google releases special Go versions (go1.xx.xb4 or similar) containing

the BoringCrypto module.

 • Some Linux vendors (RHEL, SUSE) may provide Go binaries with FIPS
patches.

2. Install FIPS Go
 • Download / install the FIPS build.

 • Verify with go version or go version -m <binary> (look for
“boringcrypto” mention).

3. Build your service with FIPS Go
 • Ensure $GOROOT points to the FIPS-enabled Go.

 • go build your app with that toolchain.

4. Remove non-FIPS crypto
 • Check for crypto/md5, crypto/sha1, etc. Replace them if needed.

 • Use only approved algorithms (e.g., SHA-256, AES).

5. Enable FIPS on the OS
 • On RHEL / CentOS:

Summary cheat sheet4.5

Approaches to
FIPS in Go

05

See section 02Set up FIPS-compliant
environment

Use Go with
BoringCrypto
(BoringSSL)

5.1

5.2

sudo grubby --update-kernel=ALL --args=”fips=1”

sudo dracut -f sudo reboot

TRU Best Practices Guide | 2025 01 | FIPS Compliance Check10 11

 • Look for a mention of boringcrypto if using that build.

 • f using a distro build, see your distro docs.

3. Search your codes

cat /proc/sys/crypto/fips_enabled → 1.

or

fips-mode-setup --check

cat /proc/sys/crypto/fips_enabled

go version

grep -r “crypto/md5” . (also check for sha1, rc4, etc.)

&tls.Config{

 MinVersion: tls.VersionTLS12,

 CipherSuites: []uint16{

 tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,

 tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,

 // ...

 },

}

Confirm with:

should be 1.

6. Test
 • Run your service and ensure there are no crypto-related errors.

 • Confirm you’re using the correct binary (boringcrypto build).

1. FIPS-validated OpenSSL

 • Make sure your system has OpenSSL built with FIPS support.

 • Typically found on RHEL / SUSE with packages like openssl-fips.

2. Write cgo wrappers

 • By default, Go does not use OpenSSL.

 • Implement C wrappers calling OpenSSL FIPS functions.

 • In Go, import “C” and invoke your wrappers instead of crypto/*.

3. Avoid standard Go crypto

 • If you stick to crypto/*, it bypasses OpenSSL, breaking
FIPS compliance.

 • All crypto operations should go through your OpenSSL FIPS wrappers.

4. Build with cgo

 • CGO_ENABLED=1 go build.

 • Ensure linking to the correct FIPS library paths
(check LD_LIBRARY_PATH).

5. Test

 • Verify your calls use FIPS-enabled OpenSSL.

 • No usage of disallowed algorithms.

1. Encryption: AES (CBC, GCM), Triple-DES (deprecated in many setups, but
still technically FIPS approved, up to certain key lengths).

2. Hashing: SHA-256, SHA-384, SHA-512.

3. Signatures: RSA, ECDSA (with FIPS-valid curve parameters).

4. TLS:

 • Avoid unsafe ciphers like RC4, MD5-based ciphers, etc.

Use cgo + OpenSSL
FIPS

FIPS-approved
algorithms and TLS

5.3

5.4

1. Check OS FIPS mode

2. Check Go version

Common steps
to verify FIPS
compliance

5.5

 • Remove/replace if found.

4. Inspect TLS config — for example:

 • If you stick to crypto/*, it bypasses OpenSSL, breaking
FIPS compliance.

 • All crypto operations should go through your OpenSSL FIPS wrappers.

5. Run tests

 • Validate that all cryptographic operations succeed.

 • If anything breaks due to missing crypto functions, you’re likely using
non-FIPS-approved algorithms.

TRU Best Practices Guide | 2025 01 | FIPS Compliance Check12 13

1. Choose a strategy:

 • Go+BoringCrypto (most straightforward)

 • cgo+OpenSSL-FIPS (more complex)

 • Vendor-supplied FIPS Go

2. Build your service with that FIPS-enabled toolchain.

3. Eliminate non-FIPS algorithms in code.

4. Enable OS FIPS mode.

5. Test thoroughly in a real FIPS environment.

Summary5.6

1. Install Python that links to a FIPS-validated OpenSSL

 • Many Linux distros (RHEL, Ubuntu, SUSE) provide a Python package
compiled against their system OpenSSL.

 • If the system OpenSSL is FIPS-enabled, Python can (in most cases)
leverage that for its crypto operations.

2. Enable FIPS mode at the OS level

 See section 4.5

3. Validate Python’s OpenSSL

 • In a Python shell:

 • import ssl print(ssl.OPENSSL_VERSION)

 • It should show a version that corresponds to your FIPS-capable
OpenSSL (e.g., “OpenSSL 1.1.1... FIPS”).

4. Check for non-FIPS algorithms

 • Python’s hashlib and ssl modules typically respect the system
OpenSSL’s FIPS policy.

 • But if you explicitly use hashlib.md5() or hashlib.sha1() for security-
critical operations, this is typically not FIPS compliant.

 • If your environment truly enforces FIPS mode, calls to MD5 for
cryptographic purposes may fail or produce errors.

1. Compile Python from source

 • Configure it to use a FIPS-validated OpenSSL. For example:

Approaches to
FIPS in Python

Set up FIPS-compliant
environment

Use a custom-built
Python with FIPS

06

6.1

6.2

./configure --with-openssl=/path/to/fips/openssl ...

make

make install

 • Ensure your custom OpenSSL is already in FIPS mode or compiled with
FIPS support.

python3 -c “import ssl;

print(ssl.OPENSSL_VERSION)”

 • After install, check:

 • The output should reflect a FIPS-enabled library.

2. Confirm build

5. Test

 • If you attempt to use a non-FIPS algorithm, Python may raise an error.

 • Some distros also patch Python to restrict usage of insecure ciphers if
fips=1 is set.

1. Library should use a FIPS-validated crypto backend

 • For example, the cryptography Python package can build against
OpenSSL. If your system OpenSSL is FIPS enabled, cryptography can
leverage that.

 • Validate that the library indeed uses the system’s OpenSSL rather than a
statically linked or vendored OpenSSL.

2. Disable or remove non-FIPS ciphers

 • Check if any third-party libraries do their own internal crypto (some
might ship with non-FIPS code).

 • Consult the library docs on FIPS compliance.

1. Enable OS FIPS mode

 • On Linux distros, set fips=1 in the boot loader, rebuild initramfs, reboot.

 • Confirm with:

Third-party
crypto libraries
(PyCryptodome,
cryptography, etc.)

Common steps
for FIPS in Python

6.3

6.4

cat /proc/sys/crypto/fips_enabled

python3 --version python3 -c “import ssl; print(ssl.OPENSSL_VERSION)”

2. Install Python and OpenSSL from Trusted Repo

 • Prefer distro packages that explicitly mention FIPS support.

 • Or build Python yourself, linking to a known FIPS-validated OpenSSL.

3. Check Python version and OpenSSL link

 • Ensure the reported OpenSSL is your FIPS build.

01 | FIPS Compliance Check 15

import ssl context = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2)

context.set_ciphers(‘ECDHE-RSA-AES256-GCM-

SHA384:ECDHE-RSA-AES128-GCM-SHA256’)

import ssl print(ssl.OPENSSL_VERSION)

4. Audit your code for Non-FIPS usage
 • Search for import hashlib, hashlib.md5, or any direct usage of MD5,

SHA-1 or weak ciphers.

 • If used for security (e.g., password hashing), replace with FIPS-approved
algorithms (e.g., SHA-256, SHA-512).

5. Restrict SSL / TLS cipher suites

 • If using ssl or requests, you can specify ciphers. For example:

6. Test and verify

 • Run your app in a fully FIPS-enabled environment.

 • If Python or a library tries to use disallowed algorithms, you may see
runtime errors or handshake failures.

1. Install or build Python with a FIPS-validated OpenSSL.

2. Confirm with:

Summary cheat sheet6.5

 • Should mention a FIPS-capable OpenSSL.

2. Enable FIPS mode at the OS level.

3. Remove non-FIPS crypto:

 • Avoid md5, sha1 (if used for security).

 • Restrict ciphers to AES and SHA-2 families.

4. Validate with real usage tests:

 • TLS connections (e.g., requests, ssl.SSLContext).

 • Hashing and encryption operations (e.g., hashlib, cryptography
library).

1. Open Local Security Policy:

 • Press Win + R , type secpol.msc, and press Enter.

2. Navigate to:

Security Settings → Local Policies → Security Options.

3. Find the policy:

System cryptography: Use FIPS-compliant algorithms for encryption,
hashing, and signing.

4. Double-click and set it to Enabled.

5. Close the policy editor.
In many cases, a reboot is advised to ensure all services pick up
the change.

Check if the System cryptography: Use FIPS-compliant algorithms
policy is Enabled.

Verify HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\
Lsa\FipsAlgorithmPolicy\Enabled is set to 1

1. Open Registry Editor:

 • Press Win + R , type regrdit, and press Enter.

2. Locate the key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa\
FipsAlgorithmPolicy

3. Set Enabled (DWORD) to 1 to enforce FIPS mode (set to 0 to disable it).

4. Close Registry Editor.

 • A reboot may be required for full effect.

Approaches to
FIPS in Windows

07

Enabling FIPS mode
in Windows

Verifying FIPS mode
on Windows

Using Group Policy / Local
Security Policy

Local Security Policy

Registry Check

Via the Registry

7.1

7.2

7.1a

7.2a

7.2b

7.1b

Note: Group Policy changes typically write to the same registry path,
so either method achieves the same result.

TRU Best Practices Guide | 2025 01 | FIPS Compliance Check16 17

PowerShell Script Example7.2c
$regKey = “HKLM:\SYSTEM\CurrentControlSet\Control\Lsa\

FipsAlgorithmPolicy”

try {

 $val = Get-ItemProperty -Path $regKey -Name Enabled -ErrorAction

Stop

 if ($val.Enabled -eq 1) {

 Write-Host “FIPS Mode is ENABLED.”

 } else {

 Write-Host “FIPS Mode is DISABLED.”

 }

} catch {

 Write-Host “FIPS Mode registry key not found; likely DISABLED.”

}

bool fipsCompliant = System.Security.Cryptography.CryptoConfig.

AllowOnlyFipsAlgorithms;

Console.WriteLine(“System Crypto FIPS compliance: “ + fipsCompliant);

In .NET applications, you can also check:Registry Check7.2d

1. Applications must use FIPS-compliant APIs

 • Even if Windows is in FIPS mode, your application or libraries must avoid
non-FIPS algorithms (e.g., MD5 for security, RC4 ciphers, etc.).

 • Some .NET or C++ libraries automatically throw exceptions when
attempting to use disallowed algorithms in FIPS mode.

2. MD5 for Nonsecurit use

 • Under FIPS guidelines, MD5 can be used for noncrytographic
purposes (e.g., file integrity checks).

 • In strict .NET FIPS mode, calling MD5 for any reason may still throw an
exception, unless special handling is in place.

 • For a truly FIPS-certified environment, ensure cryptographic operations
rely on approved algorithms (SHA-2, AES, etc.).

3. Impact on third-party tools

 • Some older applications or SSL libraries may break in FIPS mode.
Test thoroughly.

4. Installer automation

 • For large deployments (e.g., via RMM or other management tools), you
can incorporate a “FIPS check” step before installing software.

 • If FIPS is enabled, install or configure the FIPS-compliant package /
agent. If disabled, proceed with the regular version or show a warning.

Practical
considerations

7.3

 • SHA-1 is generally disallowed in strict FIPS mode for cryptographic
use, but it might still appear for noncrypto tasks (e.g., Git commits).
Audit carefully.

 • MD5 is never FIPS-approved for secure hashing.

 • Logging: Watch for errors like “FIPS_mode_set: FIPS is not supported”
if you’re using OpenSSL incorrectly.

 • Docker / container: Ensure the host kernel is in FIPS mode and you’re
using the correct FIPS Go in your container image.

 • Documentation: If you need formal certification, record your steps,
versions, and build-process thoroughly.

Quick tips08

List of RHEL 9
applications using
cryptography that
is not compliant
with FIPS 140-3

09 Application Reason for FIPS 140-3 noncompliance

Bacula Implements the CRAM-MD5 authentication protocol.

Cyrus SASL Uses the SCRAM-SHA-1 authentication method.

Dovecot Uses SCRAM-SHA-1.

Emacs Uses SCRAM-SHA-1.

FreeRADIUS Uses MD5 and SHA-1 for authentication protocols.

Ghostscript Custom cryptography implementation (MD5, RC4, SHA-2, AES) to
encrypt and decrypt documents.

GRUB Supports legacy firmware protocols requiring SHA-1 and includes the
libgcrypt library.

iPXE Implements TLS stack.

Kerberos Preserves support for SHA-1 (interoperability with Windows).

Lasso The lasso_wsse_username_token_derive_key() key derivation
function (KDF) uses SHA-1.

MariaDB, MariaDB
Connector

The mysql_native_password authentication plugin uses SHA-1.

MySQL mysql_native_password uses SHA-1.

OpenIPMI The RAKP-HMAC-MD5 authentication method is not approved for FIPS
usage and does not work in FIPS mode.

Ovmf (UEFI firmware),
Edk2, shim

Full cryptographic stack (an embedded copy of the OpenSSL library).

Perl Uses HMAC, HMAC-SHA1, HMAC-MD5, SHA-1, SHA-224, etc.

Pidgin Implements DES and RC4 ciphers.

PKCS #12 file
processing
(OpenSSL, GnuTLS,
NSS, Firefox, Java)

All uses of PKCS #12 are not FIPS compliant due to unsafe KDF for
calculating the whole-file HMAC.

Poppler Can save PDFs with nonallowed algorithms (MD5, RC4, SHA-1) if
present in the original PDF.

PostgreSQL Implements Blowfish, DES and MD5. A KDF uses SHA-1.

TRU Best Practices Guide | 2025 01 | FIPS Compliance Check18 19

Application Reason for FIPS 140-3 noncompliance

QAT Engine Mixed hardware and software implementation of cryptographic
primitives (RSA, EC, DH, AES, …)

Ruby Provides insecure MD5 and SHA-1 library functions.

Samba Preserves support for RC4 and DES (interoperability with Windows).

Syslinux BIOS passwords use SHA-1.

SWTPM Explicitly disables FIPS mode in its OpenSSL usage.

Unbound DNS specification requires SHA-1-based algorithms in DNSKEY
records for validation.

Valgrind AES, SHA hashes.

zip Custom cryptography implementation (insecure PKWARE encryption
algorithm) for password-protected archives.

We help proactively manage cyber risks and respond
to incidents effectively. Our team leverages threat
intelligence to prevent future attacks and compiles
guidelines and recommendations to assist IT teams
in building robust security frameworks.

About TRUAbout the author

Acronis Threat Research Unit (TRU) is a dedicated unit
composed of experienced cybersecurity experts. Our
team includes cross-functional experts in cybersecurity,
AI and threat intelligence.

TRU conducts deep research into emerging
cyberthreats, focusing on malware, ransomware,
phishing and APTs.

Nikita Kelesis
Nikita Kelesis has more than seven years of experience
in offensive and two years in defensive security. His
primary interests include the security of web, API and
cloud environments. Over the years, he has conducted
numerous penetration tests, both external and internal,
as well as engaging in social engineering efforts.
Recently, his main responsibilities and interests have
shifted toward developing automation for vulnerability
scanning, covering both the external perimeter and cloud
environments, including Helm charts and Docker images.

Copyright © 2002-2025 Acronis International

GmbH. All rights reserved. Acronis and the Acronis

logo are trademarks of Acronis International

GmbH in the United States and/or other countries.

All other trademarks or registered trademarks are

the property of their respective owners. Technical

changes and differences from the illustrations are

reserved; errors are excepted.

2025

01
Best Practices Guide

